Research lines
Learning & Re-learning
How does our ability to adapt to changes in the environment ultimately lead us to acquire new knowledge about the environment and optimize our behavior? How can adaptation to external cues additionally support re-learning in cases of cognitive decline in healthy aging or neurological dysfunction? Do we learn better if someone else is guiding us, or are we equally able to learn by ourselves? Using behavioral and neuroimaging techniques (EEG, fMRI), we investigate the link between adaptation to environmental dynamics and the learning and re-learning of those dynamics, as well as the factors that optimize adaptation and hence learning. In our research, we approach these questions from both an individual as well as from an inter-individual point of view.
Researchers:
Rachel Brown, Ben Schultz and Laura Verga
Project I: Sensorimotor and statistical learning in healthy aging
Project II: Motor and sensorimotor rehabilitation in Parkinson’s disease
Project III: Timing and synchronization in social learning
Adapting to Dynamic Environments
We are interested in the ability to successfully navigate through, and interact with, an ever-changing dynamic environment. We investigate the mechanisms which allow adequate timing and adaptation to the rate and rhythm of events in the environment using behavioural and neuroimaging techniques. As inadequate timing factors into the neurofunctional profile of different patient populations, we use our findings to develop strategies for compensation.
Researchers:
Emmanuel Biau, Katerina Kandylaki and Michael Scwartze
Project I: Spontaneous sensory and sensorimotor timing
Project II: Low frequency oscillations in auditory temporal processing
Project III: Cross-domain rhythm perception
Project IV: Battery for the Assessment of Auditory Sensori-motor and Timing abilities
Voice Adaptation and Vocal Learning
According to control theory, internal models play a decisive role in how our brain operates at an optimum level. By extracting sensory information from the environment and integrating it across domains, the brain is constantly updating its modus operandi, thereby using sensory resources as efficiently as possible. An essential prerequisite for this efficiency is the ability to form sensory predictions, which entails a repeatedly encountered stimulus to become less salient and thus, more predictable. With the extension of a well-established somatosensory model into the auditory domain, our focus lies on elucidating individual differences in auditory sensory prediction by using behavioral and neuroimaging techniques (EEG & fMRI).
Researchers:
Lisa Goller, Joseph Johnson and Xanthate Duggirala
Project II: Sensory gating and executive control: two sides of the same coin in non-clinical voice hearing?
Project III: Structural Alterations in voice hearers